From microbiological to ecosystemic scale evaluation of carbon-based (CO2, CH4) greenhouse gas sources, production, and transfers in temperate peatlands: a pluridisciplinary week at the playground for Critical Zonists in Frasne, Jura Mountains

Alexandre Lhosmot1, Adrien Jacotot2, Camille Bouchez3, Eliot Chatton3, Sarah Coffinet4, Philippe Binet1, Robin Calisti5, Edward A. D. Mitchell5, Daniel Gilbert1, Marie-Laure Toussaint1, Marc Steinmann6, Travis Meador7, Christophe Loup6, Delphine Combaz8, Lilian Joly8, Florian Parent8, Nicolas Dumelie8, Grégory Alborà8, Jean-Louis Bonne8, Charbel Abdallah8, Thomas Lauvaux8, Jérémie Burgalat8, Ngoc-Minh Hoang8, Laurent Longuevergne3, Olivier Mathieu9, Philippe Amiotte-Suchet9, Véronique Lavastre10, Marie-Noïlle Pons11, Arnaud Elger12, Romain Walcker12, Valentin Essert6, Laurent Millet6, Hélène Masclaux6, Valérie Verneaux6, Anne Boetsch13, Joshua Ducasse6, Christina Hazard14, Huaiyu Wang14, Vincent Jassey12, Laure Gandois12, Jean Sébastien Moquet15, Sebastien Gogo4, Vincent Milesi16, and Guillaume Bertrand1,17

1Laboratoire Chrono-environnement, 25200 Montbéliard – CNRS : UMR6249, Université de Franche Comté – France
2Sol, Agro et hydrosystèmes, Spatialisation (SAS), Institut Agro, 35700 Rennes – CNRS : UMR1069, INRAE – France
3Géosciences Rennes, 35700 Rennes – CNRS : UMR6118, Université de Rennes I – France
4Ecosystèmes, Biodiversité, Evolution (Ecobio), 35700 Rennes – UMR 6553 CNRS, Université de Rennes I – France
5Laboratoire de Biodiversité du Sol, Université de Neuchâtel, 2000 Neuchâtel – Suisse
6Laboratoire Chrono-environnement, 25000 Besançon – CNRS : UMR6249, Université de Franche Comté – France
7Biology Center Czech Academy of Sciences, Soil Water Research Infrastructure, Ceske Budejovice, CZ-37005 – République tchèque
8GSMA, 51687 Reims – CNRS : UMR7331, Université de Reims - Champagne Ardenne – France
9Biogéosciences, Université de Bourgogne, 21000 Dijon – CNRS : UMR6282 – France
10LGL-TP, 42023 Saint-Étienne – Université Jean Monnet - Saint-Étienne, CNRS : UMR5276 – France
11LRGP, 54000 Nancy – Université de Lorraine, Centre National de la Recherche Scientifique – France
12Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), 31326 Castanet – CNRS : UMR5245, Université de Toulouse Paul Sabatier – France
13OSU-THETA, 25000 Besançon – Université de Franche-Comté, CNRS : UMR6249 – France
14École Centrale de Lyon, Université de Lyon, 69134 Ecully – CNRS : UMR5005 – France
15Institut des Sciences de la Terre d’Orléans (ISTO), 45100 Orléans – Observatoire des Sciences de l’Univers en région Centre, Université d’Orléans, CNRS : UMR7327 – France
16Institut des Sciences de la Terre d’Orléans - UMR7327 – Bureau de Recherches Géologiques et Minières (BRGM), Observatoire des Sciences de l’Univers en région Centre, Institut National des Sciences de l’Univers, Université d’Orléans, Centre National de la Recherche Scientifique – France
17Water Resources and Environmental Engineering Laboratory, Federal University of Paraíba, 58051-900 João Pessoa – Brésil
Despite covering only 3% of the global land surface, peatlands are an active part of the Critical Zone (CZ) exchanging large water and greenhouse gas (GHG) fluxes with the surrounding aquifers, surface waters, and the atmosphere. While ecosystem services of peatlands (carbon and water storage, buffering of local climate) are essential to address 21st century challenges regarding climate, biodiversity, and water resources, they are directly threatened by human activities at global (climate change) and local (drainage for agriculture, forestry and peat harvesting) scales. Understanding the hydrological, biogeochemical, and ecological mechanisms of peatlands functioning at different spatiotemporal scales is therefore fundamental to mitigate these impacts.

In order to characterize the mechanisms and factors controlling GHG sources, production and transfers in peatlands, we organized an interdisciplinary field campaign at the Frasne peatland. The site (7 ha, 46.826 N, 6.1754E, 840 m a.s.l) is a long-term observatory since 2008 and one of the four French peatland observatories (SNO Tourbières) of the French CZ research infrastructure (OZCAR). The peatland is also an observatory of the Zone Atelier of Arc Jurassien dedicated to exploring the interrelationships between human and nature. This campaign is supported by the TERRA FORMA project, aiming at designing and testing in-situ smart, connected, low-cost, low-impact and socially appropriated environmental sensors to capture the trajectory of the CZ in the Anthropocene.

This field campaign will combine microbiological characterization (membrane lipid analysis to trace the involved microbial metabolisms) with hydrogeochemical analyses of peat pore water (major elements, DOC (quantity and quality), CO2, CH4, δ18OH2O-δ2HH2O, δ13CDIC, δ13CDOC, δ13CCH4, δ2HCH4, δ13CCO2) along upstream-downstream and surface-depth gradients. In parallel, GHG fluxes will be measured from the plot to the ecosystem scale, by combining dissolved gas profiles, chamber measurements, eddy-covariance and unmanned aerial vehicle characterization.

This multiscale campaign will have the potential to address various challenges faced by Critical Zonists and environmental managers: (1) assessing 3D carbon fluxes (lateral and vertical) at the peatland scale; (2) characterizing biological processes and in particular how they favor or limit GHG production; (3) and transfers and developing affordable and user-friendly tools to face the above-mentioned topics.

Mots-Clés: Drone, Eddy covariance, Methanogenesis, Methanotrophy, GHG, SocioEcosystems, Critical Zone, Peatland

Intervenant